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Abstract In this chapter, we present how to learn regression models on Lie groups
and apply our formulation to visual object tracking tasks. Many transformations
used in computer vision, for example orthogonal group and rotations, have matrix
Lie group structure. Unlike conventional methods that proceed by directly lineariz-
ing these transformations, thus, making an implicit Euclidean space assumption,
we formulate a regression model on the corresponding Lie algebra that minimizes
a first order approximation to the geodesic error. We demonstrate our method on
affine motions, however, it generalizes to any matrix Lie group transformations.

1 Introduction

Suppose we are given with a set of pairs {(Mi, fi)} where Mi’s are on an n-
dimensional Lie group G and fi’s are their associated field vectors in Rd. Our goal
is to derive a regression function β : Rd 7→ G that approximates the corresponding
point M on the Lie group for a vector f

M = β(f). (1)

We take advantage of the Lie algebra g and solve the corresponding linear regression
problem instead

log M = fTΩ. (2)

After a brief overview of Lie groups in Section 2, we define an approximate
solution of (1) for matrix Lie groups in Section 3, and apply it to 2D affine motion
tracking in Section 4. Part of the discussion can also be found in [24, 30].
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2 Lie Group

A Lie group is a set G that is a group with the topology of an n-dimensional smooth
differentiable manifold, in which the group operations multiplication G×G 7→ G :
(X,Y) 7→ XY and inversion G 7→ G : X 7→ X−1 are smooth maps. In other words,
the mapping (X,Y) 7→ X−1Y is a smooth mapping of the product manifold G×G
into G.

Some simple examples of Lie groups are the non-zero real numbers, the circle,
the torus, the set of rotations of 3-dimensional space, the 3-sphere, and the set of
square matrices that have nonzero determinant. Consider the sphere S2 ⊂ R3 under
rotations. The group property means that any two consecutive rotations of the sphere
can also be done by rotating it over a single angle, and any rotation has an inverse,
i.e rotating the sphere over an opposite angle. This shows the sphere has rotational
symmetries. Since these rotations can be arbitrarily small and many small rotations
adds up for a big rotation, these operations are smooth maps (it is indistinguishable
from ordinary Euclidean space at small scales), therefore the rotation group SO(3)
acting on S2 is a Lie group. This can be observed for the set of square matrices that
have non-zero determinant. Such a matrix corresponds to a transformation of the
space. The set of such transformations for a group: the matrices can be multiplied,
each has an inverse, the multiplication is associative, and the identity transformation
fixes each point of space. From these examples, we abstract the concept of a Lie
group as a set of transformations or symmetries that has the structure of a smooth
manifold, i.e. continuous symmetries.

Any Lie group gives rise to a Lie algebra. There is a corresponding connected
Lie group unique up to covering to any finite-dimensional Lie algebra over real
numbers. This correspondence between Lie groups and Lie algebras allows one to
study Lie groups in terms of Lie algebras then transfer results from algebras back to
groups. The tangent space to the identity element I of the group forms a Lie algebra
g, which is a vector space together with a non-associative multiplication called Lie
bracket [x, y]. Lie bracket is a binary operator over g × g 7→ g defined as [x, y] :=
xy − yx and satisfies the bilinearity, alternativity, and Jacobi identity axioms, i.e.
[ax + by, z] = a[x, z] + b[y, z], [x, x] = 0, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for
all scalars a, b and all elements x, y, z ∈ g. We can reinterpret most of the properties
of a Lie group into properties of the bracket on the Lie algebra.

The distances on a manifold are measured by the lengths of the curves connecting
the points, and the minimum length curve between two points is called the geodesic.
There exists a unique geodesic starting with vector m ∈ g at the group element I.
The exponential map exp : g → G maps the vector m to the point reached by this
geodesic. Let exp(m) = M, then the length of the geodesic is given by ρ(I,M) =
‖m‖. In general, the exponential map is onto but not one-to-one. Therefore, the
inverse mapping log : G → g is uniquely defined only around the neighborhood of
I. If for any M ∈ G, there exist several m ∈ g such that M = exp(m), then log(M)
is selected as the vector with the smallest norm. Left multiplication by the inverse
of a group element M−1 : G → G gives way to map the point M to I. The tangent
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Fig. 1 Conceptual illustration of linear regression on Lie group.

space at I is the Lie algebra. The action of M−1 on the tangent space is through the
adjoint action map. See [18] for more explanation.

Using the logarithm map and the group operation, the geodesic distance between
two group elements is measured by

ρ(M1,M2) = ‖ log(M−11 M2)‖. (3)

The norm above for the Euclidean space Rd with ordinary vector addition as the
group operation is the Euclidean norm. How basis elements in the Lie algebra map to
natural basis elements in Rd is not unique, which amounts to a choice of weighting,
as explained in [8].

The exponential and logarithm maps for matrix Lie groups are given by the ma-
trix exponential and logarithm operators

exp(m) =

∞∑
k=0

1

k!
mk , log(M) =

∞∑
k=1

(−1)k−1

k
(M− I)k. (4)

A comprehensive discussion on matrix manifolds and higher-order optimization
methods on manifolds can be found in [1].

3 Linear Regression on Matrix Lie Groups

The regression function β : Rd 7→ G estimates the element M on the matrix Lie
group G for a given d-dimensional feature vector f as M = β(f). This concepts is
illustrated in Figure 1.

The parameters of the regression function are learned from a set of N training
pairs {(Mi, fi)}. Since these matrices are on a differentiable manifold, the sum of
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the squared geodesic distances between the estimations β(fi) and the given matrices
Mi can be used as the loss function

L =

N∑
i=1

ρ2 (β(fi),Mi) . (5)

In general, the exponential map does not satisfy the identity exp(m1) exp(m2) =
exp(m1 + m2). The Baker-Campbell-Hausdorff (BCH) formula [22] expresses the
logarithm log(exp(M1) exp(M2)) of the product of two Lie group elements as a
Lie algebra element using only Lie algebraic operations for noncommutative Lie
groups. A first order approximation to the BCH is

log(exp(M1) exp(M2)) = M1 + M2 +
1

2
[M1,M2] +O(M2

1,M
2
2) (6)

using the Lie bracelet operator. Since the corresponding Lie algebra elements for
M1 and M2 are m1 = log(M1) and m2 = log(M2), the geodesic distance can be
approximated by

ρ(M1,M2) = ‖ log(M−11 M2)‖
= ‖log [exp(−m1) exp(m2)]‖
=
∥∥m2 −m1 + 0.5[−m1,m2] +O(m2

1,m
2
2)
∥∥

≈ ‖m2 −m1‖ . (7)

Using (7), the loss function (5) can be approximated as

L ≈
N∑
i=1

∥∥log (Mi)− log
(
β(fi)

)∥∥2 . (8)

up to the first-order terms. The approximation is good enough as long as the training
samples are in a small neighborhood of the identity.

To formulate the the loss function in terms of a linear regression in a vector space,
a matrix Ω : Rd 7→ Rn that estimates the tangent vectors log (Mi) on Lie algebra is
defined

β(f) = exp
(
fTΩ

)
(9)

where Ω is a d×n matrix of linear regression coefficients. Selecting d orthonormal
bases on the Lie algebra, the matrix norm can be computed as the Euclidean distance
between two vectors.

By taking the advantage of the Lie algebra, the tangent vectors at the identity
log (Mi) can be rearranged from matrix to n-dimensional vector form. Let X be a
N × d matrix of row-wise arranged feature vectors, and Y be the corresponding
N × n matrix of vector form mappings of the tangent vectors
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X =

 f1...
fN

 Y =

 log (M1)
...

log (MN )

 . (10)

Then, the loss function (8) can be written as

L ≈ tr
(
(Y −XΩ)T (Y −XΩ)

)
(11)

where the trace tr replaces the summation in (8). Differentiating the loss function
with respect to Ω, the minimum is achieved at

Ω = (XTX)−1XTY. (12)

For rank deficient cases where the number of training samples is smaller than the di-
mension of the feature space N < d, the least squares estimate becomes inaccurate
since XTX has determinant zero. To avoid overfitting, a penalty on the magnitude
of the regression coefficients in the loss function is introduced

L ≈ tr
(
(Y −XΩ)T (Y −XΩ)

)
+ λ‖Ω‖2 (13)

which is also known as the ridge regression [12]. The minimizer of the loss function
is given by

Ω = (XTX + λI)−1XTY (14)

where I is an d × d identity matrix. The regularization coefficient λ determines the
degree of shrinkage on the regression coefficients.

4 Application to Affine Motion Tracking

Locating an image region that undergoes 2D affine transformations is an essential
task for camera motion estimation, pose invariant object recognition, and object
tracking. In addition to challenging problems such as appearance changes, lighting
variations, background clutters, and temporary occlusions, affine motion tracking
confronts with computational issues due to the high dimensionality of the motion
parameter space that induces an intractable number of hypotheses to be tested.

4.1 Related Work

Conventional methods often attempt to solve affine motion tracking in a vector space
by state-space estimation [25, 14, 7, 2], template alignment [9, 5, 19] and feature
correspondence [20, 13] approaches. State-space estimators assume affine tracking
as a Markovian process and construct a probability density function of object param-
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eters, which is supposed to be a normal distribution in case of Kalman filtering [7].
Due to this assumption, Kalman filters fail to describe multi-modal distributions,
thus, Monte Carlo integration methods such as particle filters [14] are utilized. In
theory, particle filter can track any parametric variation including affine motion.
However, its dependency to random sampling induces degenerate likelihood esti-
mations especially for the higher dimensional parameter spaces. Moreover, its com-
putational requirements exponentially grow with the number of the state variables.
In template alignment, the parametrized motion models -often more complex than
affine motion- is estimated using appearance and shape models that are usually fitted
by nonlinear optimization, e.g. iteratively solving for incremental additive updates
to the shape parameters [9] or compositional updates to the warped models [4]. Al-
ternatively, affine tracking can be formulated as a minimization on a cost function
that consists of the sum of squares differences between the model instance obtained
with a linear transformation and input image. However, rarely the relationship be-
tween the image intensity values and the model variation can be expressed in a linear
form. To accommodate nonlinear transformations, stochastic gradient descent [25],
relevance vector machine [28], Tikhonov regularization[2] are employed. One short-
coming of these algorithms is that they require computation of partial derivatives,
Jacobian, and Hessian for each iteration, which makes them impractical. Several
methods utilize feature point correspondences. Feature point based methods mainly
differ in the type of features and descriptors, e.g. using SIFT [26], SURF [13], a
combination of primitive features like simple differences between intensity values
at randomly chosen locations [20], used for matching the object model to the current
frame. The feature-point based trackers are highly sensitive to the available texture
information on the object.

Tracking in general can also be regarded as a detection and model fitting problem.
A typical tracking-by-detection framework is composed mainly of motion model,
observation model and model updater [29, 23, 27]. Motion model generates a set
of candidates which might contain the target in the current frame based on the es-
timation from the previous frame. Observation model judges whether a candidate
is the target based on the features extracted from it. Model updater online updates
the observation model to adapt the change of the object appearance. Conventional
models range from histograms, templates, classifier ensembles, to more intricate
appearance models such as region covariance matrices [21] where the matrix is up-
dated on a manifold. Model fitting is considered as a classification problem in [3]
by training an ensemble of classifiers with object and background pixels and inte-
grating classifiers over time. More recently, [11] proposed directly predicting the
change in object location between frames by an online structured output support
vector machine. This method uniformly samples the state space to generate posi-
tive and negative support vectors. Such a brute force approach on a larger search
window, however, is computationally intractable.
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4.2 Tracking as a Regression Problem on Lie Group

We interpret object tracking task as a supervised learning problem and solve it us-
ing a regression function on the Lie algebra. We focus on 2D region motions that
establish a matrix Lie group structure. The transformations that we are interested
(affine motion Aff(2,R), similarity transform S(2), Euclidean motion SE (2), etc.)
are closed subgroups of general linear group GL(3,R), which is the group of 3× 3
nonsingular square matrices. We develop formulation for 2D affine motion group,
however the tracking method is applicable to any matrix Lie group structured mo-
tion transformation. A two-dimensional affine transformation Aff(2,R) is given by
a 3× 3 matrix M as

M =

(
θ t
0 1

)
(15)

where θ is a nonsingular 2 × 2 rotation matrix and t ∈ R2 is a translation vector.
The set of all affine transformations forms a matrix Lie group. The structure of affine
matrices in (15) is a d = 6 dimensional manifold. The associated Lie algebra is the
set of matrices

m =

(
U v
0 0

)
(16)

where, U is a 2 × 2 matrix and v ∈ R2. The matrix m can be formed into a d = 6
dimensional vector by selecting the entries of U and v as an orthonormal basis.

The set of 2D affine transformations Aff(2,R) do not constitute a vector space,
but rather a manifold that has the structure of a Lie group. Existing methods for the
most part disregard this manifold structure and flatten the topology in a vector space.
Vector forms cannot globally parameterize the intrinsic topology on the manifold in
a homogeneous fashion, thus fail to accurately evaluate the distance between affine
motion matrices causing unreliable tracking performance. There are only a few rel-
evant work for parameter estimation on Lie groups, e.g. [10] for tracking an affine
snake and [6, 24, 16] for tracking a template. However, [6] fails to account for the
noncommutativity of the matrix multiplications thus the estimations are valid only
around the initial transformation. [24] learned the correlation between affine mo-
tions and the observed descriptors using a regression model on Lie algebra. Inher-
ent topology is considered by [16] where a conventional particle filter based tracker
where the state dynamics are defined on a manifold using a log-Euclidean metric.
However, none of these methods incorporate an efficient mechanism to incorporate
object appearance changes.

Our formulation has several advantages. After learning the regression function,
the tracking reduces to evaluating the function at the previous location, therefore it
can be performed very fast. In addition, the framework gives flexibility to use any
region descriptor.
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Fig. 2 Training samples are generated by applying N affine motions Mi at the object coordinates.

Learning Regression Function:

During the initialization of the tracking at frame I0, we generate a training set of N
random affine transformation matrices {Mi} around the identity matrix and compute
their corresponding observed descriptors fi within the initial object region to obtain
the training set samples {fi,Mi}. The process is illustrated in Figure 2.

Specifically, the object coordinates are transformed by multiplying on the right
with M−1i and the corresponding descriptor fi = f(I0(A−10 .M−1i )) is computed
Using the initial location of the object A0. The motion matrix A transforms a unit
rectangle at the origin to the affine region enclosing the target object

[xim yim 1]T = A[xob yob 1]T (17)

where, the subscripts indicate the object coordinates and image coordinates respec-
tively. The inverse transform A−1 is also an affine motion matrix and transforms the
image coordinates to the object coordinates as illustrated in Figure 3. Notice that,
the transformation A−10 moves the object region back to the unit rectangle and the
image in the object coordinates is denoted as I(A−10 ).

The appearance of an object is described with an feature vector. We use only the
pixel values inside the unit rectangle. Since we expect the feature vector to be an
indicator of affine motion, we use a motion sensitive region feature. The target re-
gion is represented with a concatenated set of orientation histograms computed at a
regular grid inside the unit rectangle in object coordinates (see Figure 3). With this,
a d-dimensional vector f

(
I(A−1)

)
∈ Rd is obtained. The unit rectangle is divided
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Fig. 3 The mapping and its inverse, between the object and image coordinates. The gradient
weighted orientation histograms are utilized as region descriptors.

into 6 × 6 = 36 cells and a cell histogram is computed in each of them. Each his-
togram is quantized at π/4 degrees between 0 and 2π. The size of each histogram
is eight dimensional and the descriptor is d = 288 dimensional. Similar to SIFT
descriptors [17], the contribution of each pixel to the histogram is proportional to its
gradient magnitude. During tracking the peripheral pixels are frequently contami-
nated by the background, hence we leave a 10% boundary outside the unit rectangle
and construct the descriptor inside the inner rectangle.

After obtaining the training pairs, we form the data matrices as in (10) and ap-
ply (14) to learn the linear regression function Ω to model the correlation between
the tangent space projection of the affine motion matrices and their corresponding
observed descriptors.

Tracking Region in the Next Frame:

Tracking process estimates the transformation matrix At, given the observations
I0...t up to time t, and the initial location A0. We model the transformations incre-
mentally

At = Mt.At−1 (18)

and estimate the increments Mt at each time. The transformation Mt corresponds to
motion of target from time t − 1 to t in the object coordinates. Given the previous
location of the object At−1 and the current image It, we estimate the incremental
motion Mt by the regression function

Mt = exp
(

(f
(
It(A

−1
t−1)

)T
Ω
)
. (19)

After learning the regression function Ω, the tracking problem reduces to es-
timating the motion via (19) using current observation It and updating the target
location via (18). To better localize the target, at each frame we repeat the motion
estimation using Ω a maximum of K = 10 times or the estimated incremental
motion Mt becomes equal to identity.
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Algorithm 1 Affine motion tracking
Require: Initial location A0, images It, λ, γ, update frequency p, max iteration K

procedure TRAINING(t = 0)
Generate N motion matrices Mi, i = 1 . . . N
Extract features fi = f

(
I0(A−10 .M−1i )

)
Form X,Y
Learn Ω by Eqn.14

procedure TRACKING(t > 0)
repeat

Mt = Ωf
(
It(A

−1
t−1)

)
At ← Mt.At−1
k ← k + 1

until Mt = I or k ≤ K
if mod(t, p) = 0 then

Update Ω by Eqn.20
t← t+ 1

Model Update:

Since objects can undergo appearance changes in time, it is necessary to adapt to
these variations. In our case, we update the regression function Ω.

During tracking, we generate a set of random observations at each frame. The
observations stored for last p = 100 frames constitute the update training set. Let
Xp and Yp be the new training set stored in the matrix form, andΩp be the previous
model. After each p frames of tracking, we update the coefficients of the regression
function by minimizing the loss

L ≈ tr
(
(Yp −XpΩ)T (Yp −XpΩ

)
+ λ‖Ω‖2 + γ‖Ω −Ωp‖2.

The error function is similar to (13), but another constraint is introduced on the
difference of regression coefficients. The minimum is achieved at

Ω = (XT
p Xp + (λ+ γ)I)−1(XT

p Yp + γΩp) (20)

where the parameter γ controls how much change on the regression parameters are
allowed from the last estimation. To take into account the bias terms all the function
estimations are performed using centered data.

A pseudo-code of the tracking algorithm is given in Algorithm 1.

Experiments:

We compare the Lie algebra based parametrization with the linearization (21)
around the identity matrix [9, 15, 28]

M(x0 + δx) ≈ M(x0) +
∂M

∂x
δx (21)
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Fig. 4 Estimation errors of the Lie algebra and the linearization methods using orientation his-
tograms and intensity features.

where M(x0) = I, by measuring the estimation errors. We also compare orientation
histograms with the intensity difference features used in optical flow estimation and
tracking.

We generate a training set of N = 200 samples by random affine transforma-
tions of a single object. The motions are generated on the Lie algebra, by giving
random values between −0.2 and 0.2 to each of the six parameters, and mapped to
affine matrices via exponentiation. Since the size of the training set is large enough,
there is no rank deficiency problem. The function Ω is estimated by ridge regres-
sion with λ = 2.10−3 for orientation histograms and λ = 5.0 for intensity features,
determined by cross validation. Each test set consists of NT = 1000 samples. The
samples inside a set have fixed norm. The norms ‖ log(M)‖ vary from 0.025 to
0.35. We perform a single tracking iteration by each method, and measure the mean
squared geodesic error

1

NT

NT∑
i=1

ρ2 (Ωfi,Mi) (22)

between the estimations and the true values.
As shown in Figure 4, the estimation based on the Lie algebra is better than the

linearization for transformation of all norms. The ratio is almost constant and on the
average the linearization have 12% larger error. This is expected since our approach
minimizes the sum of squared geodesic error. The estimations with orientation his-
tograms are significantly better than the intensity based features.

We show sample tracking examples in Figure 5. In the experiments, the param-
eters of the ridge regression were λ = γ = 2.10−3, which were learned offline
via cross validation. The training dataset is generated on the Lie algebra, by giving
random values between −0.1 and 0.1 to each of the six parameters. Although we
track the targets with an affine model, these targets are not planar. Therefore, an
affine model cannot perfectly fit the target but produces the best affine approxima-
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Fig. 5 Sample affine tracking results. Target region boundaries are color-coded.

tion. Since nonplanar objects undergo significant appearance variations due to pose
changes, the model update becomes important. The targets have large in-plane and
off-plane rotations, translations, scale changes and occlusions. The estimations are
accurate, which shows the robustness of the tracking approach.
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